
 page 1/26

European CNC-Network

Train for Europe – Digital Revolution 4.0

Technical Specification

 page 2/26

1 Overview
The idea of the project is to bring some animations (Led, motors, servos, whatever) into the already existing

wagons of the „Train for Europe“.

 page 3/26

Inhalt
1 Overview ..2

1.1 Details: ... 5

1.2 Server ... 6

1.3 MQTT-Broker ... 6

2 Hardware ...7

2.1 Why PCF8575 replacement ... 7

2.2 Overview .. 7

2.3 Schematic... 8

2.4 Board ... 9

2.5 Bill of material .. 10

2.6 Wiring .. 10

2.6.1 Bill of material .. 10

2.7 Pin assignments PCF8575 and Arduino ... 12

2.8 RS485-Node ... 13

3 Software.. 14

3.1 MQTT-Message flow .. 14

3.1.1 Setup .. 14

3.1.2 Handshaking .. 16

3.1.3 Starting and stopping any animation at a wagon .. 17

3.2 Addressing scheme .. 18

3.2.1 Mapping ... 18

3.3 Animations ... 19

3.3.1 Steps to build your own animation ... 20

4 Wagons ... 21

4.1 Used wagons in the train ... 23

4.2 Wagon DK (MP3-Player) ... 23

4.3 Wagon BE ... 24

4.4 Wagon SE ... 24

4.5 Wagon RO .. 24

4.6 Wagon DE .. 24

5 Sources (Hardware + Software) ... 25

6 Sources (Datasheets) ... 26

 page 4/26

 IP

 IP IP IP

Power supply:
opt.1 (mobile): Battery in Loco: e.g. 12V / 7Ah
opt.2 (stationary): Power Supply e.g. 12V / 2A

Website, listing all ShowCases and their state (online / offline)
Controlling the gadgets, showing video signals, etc.

MQTT-Broker

MQTT-Client talking to
MQTT-Broker

per wagon µC, talking with loco, controlling the gadget

e.g.: Arduino, ESP, MCP23016, ...

Loco Controller
talking with ShowCase controller
via MQTT and all wagons
e.g.: Arduino, ESP, ESP32...

Controller

ShowCase IR

Controller

ShowCase DE

Controller

ShowCase IT

Server
BackEnd | FrontEnd

Internet

power & communication (4 wire)

e.g. CAN2.0 | I2C | ... any other 2-wire-communication

W
LA

N

Local – No consensus required after the ESP at the loco / first wagon

MQTT-Client

Global – Consensus to all the global issues required

 page 5/26

1.1 Details:
Different options have been discussed, how to connect the wagons to the loco resp. to the ESP32 at the first wagon. Here is a summary of the discussion.

Option #1: suggested by Team Italy

ESP32 at the loco (or the first wagon,
if there is no loco) connected to the
Showcase-Controller using MQTT via
Wi-Fi
Connected to the other wagons using
I2C-Bus

I2C-Bus
+ 5V, GND

means 4 wires
are sufficient

I-O-Extender like PCF8574,
PCF5875, MCP23016 or
similar to control the
electronic gadget

I2C-Bus
+ 5V, GND

means 4
wires are
sufficient

I-O-Extender like
PCF8574, PCF5875,
MCP23016 or similar to
control the electronic
gadget

I2C-Bus
+ 5V, GND

means 4
wires are
sufficient

I-O-Extender like PCF8574,
PCF5875, MCP23016 or
similar to control the
electronic gadget

Pros: simple, cheap
Cons: can be problematic, if the train is long, because I2C was not designed for long wires (should be tested with a prototype), can be solved with bus-extenders (e.g. LTC4311)
 restricted address range to 7 or 8 devices
 no advanced timing possible at the wagon (at least difficult)

Option #2: suggested by Team Germany

ESP32 at the loco (or the first wagon,
if there is no loco) connected to the
Showcase-Controller using MQTT via
Wi-Fi
Connected to the other wagons using
RS485-Bus and ModBus-Protocol

RS485-Bus
+ 12V, GND

means 4 wires
are sufficient

- Arduino Nano Every
- MAX481 Bus-Transceiver
- ModBus-Client here
- own µC to realize any kind

of electronic gadget

RS485-Bus
+ 12V, GND

means 4
wires are
sufficient

- Arduino Nano Every
- MAX481 Bus-

Transceiver
- ModBus-Client here
- own µC to realize any

kind of electronic
gadget

RS485-Bus
+ 12V,
GND

means 4
wires are
sufficient

- Arduino Nano Every
- MAX481 Bus-

Transceiver
- ModBus-Client here
- own µC to realize any

kind of electronic gadget

Pros: no length restrictions due to the RS485-Bus
 no restrictions to the number of devices
 own DC-DC-Converter at the Arduino-Boards reduces noise at the power supply lines
Cons: more expensive because of the additional µC in each wagon
 higher complexity due to multiple controllers

4 4 4 4

 page 6/26

1.2 Server

Beside the website itself, …
Webserver ??
MongoDB (version ??)
Go-Program from Denis

1.3 MQTT-Broker
Actually, we are using https://www.hivemq.com/ as MQTT broker. There is no special requirement to this
broker, so any other will also fit our needs.
We also tested: https://www.emqx.io/ as well as a local instance of Mosquito.
We are using anonymous access, so there is no need for a certificate at the ESP.

const char *mqtt_broker = "broker.hivemq.com";

const char *mqtt_username = "";

const char *mqtt_password = "";

const int mqtt_port = 1883;

See section 3.1 for a detailed description of the message flow between the ESP and the broker.

https://www.hivemq.com/
https://www.emqx.io/
https://mosquitto.org/

 page 7/26

2 Hardware

2.1 Why PCF8575 replacement
In the first meeting, the group decided to use PCF8575 port expanders inside the wagons.

The PCF8575 is a 16Bit port expander for the I2C-Bus. A maximum of 8 devices can be used per I2C bus.

More devices require the use of an I2C multiplexer. Another option is to replace the port expander by a

microcontroller like Arduino. The processing capabilities will allow much more complex animations and the

addressing can be from 0… 255.

The port expanders are very limited and not suitable for more complex animations. They can be used for

very simple animations only.

2.2 Overview
Because of the lack of internal configuration registers (like MCP23016), the device is quite simple. After the

initial write sequence transporting the device address, every subsequent byte written will be placed in the

output latch A bevor B. The operation is module 2. Writing 6 bytes will have the same result then writing

only the last 2 bytes.

The firmware to emulate the PCF8575 is based on the WIRE library, which comes with Arduino. The idea is

to be able to replace a PCF8575 without making any changes to the I2C-Master. Just setting the correct

address at the slave. The address must be set in the source code and cannot be changed by external

settings like the PCF8575 can.

The controller board used here comes with real push-pull-outputs, where the PCF8575 uses only low-side

switches. The Controller used is an Arduino Nano Every. It is cheap, has a small footprint and supports 2

serial ports by hardware, so one can be used for serial monitor and the other is used for RS485 device

transceiver. The two flavors of the board are:

a) As a replacement of the PCF8575 16 Bit I2C bus expander. In this mode, the RS485-Transceiver will not

be used. The socket for this chip can be left open, R1… R6 are not needed.

b) As a node on a RS485-Network. Based on this physical layer, a ModBus-Client will be placed. ModBus is

a very famous protocol, widely used in industry. Libraries for Arduino are also available. It allows a much

more sophisticated control of the wagon, than a simple bus expander can provide.

The following description covers both scenarios. If all parts are placed, you can simply change the usage by

changing the two jumpers JP1 and JP2. See section board for details.

 page 8/26

2.3 Schematic

Changes to Rev.0:

- DC-DC-Converter replaced by a cheaper device with smaller footprint

- Additional holes to connect to +Ub and +5V for other equipment inside the wagon

- Add 3 Mounting holes

- Add Version number at the soldering side

 page 9/26

2.4 Board
To allow a small footprint, most of the parts were placed underneath the

controller board. We do not use SMD packages to keep soldering simple.

The dimensions of the pcb are: 34,5 x 68,6 mm

Layout changes slightly to avoid vias. Now there are only 2 vias without a

part. If you produce the pcb yourself, take care of these two vias an solder

a short piece of wire on both sides to establish a connection through the

hole.

If you order the pcb, the manufacturer will connect through all holes.

FS1 A Step-Down-Converter with a 5V / 500mA output and a wide
input-range from 6,5V..36V. Using a DC-DC-Converter per node
will eliminate noise coming along the main power supply from
the loco. One power supply will fit all needs.

JP1, JP2 These two jumpers connects terminal 2/3 to either the RS485
device or the SDL/SCL lines of the Controller. The jumpers must
only be changed, if the firmware at the node changes. So if you
do not plan to change the operation mode, you can use 2 short
wires as well.
1-2 = I2C mode
2-3 = RS485 mode

Address To spare I/O-pins, the address of the device must be set via
source code. By doing so, any address in the range from 0x01 to
0xFF is possible.
In RS485-mode, it will be possible to change the address via
ModBus protocol.

R1,R3 They provide a save potential at the lines A and B, if no sender is
active. These resistors are only for safe operation and must not
be placed several times. Place them at the first node in the chain
and only, if you are using RS485 mode.

R2 Terminating resistor. Must correspond with the impedance of
the wires. 120 Ohm will fit most needs.
Needed only at the beginning and the end of the bus and only, if
you are using RS485 mode.

Schematic as well as the board were made with KiCAD, with is available for free

(see https://www.kicad.org/).

https://www.kicad.org/

 page 10/26

2.5 Bill of material
All parts can for this pcb can be ordered at Reichelt. See: https://www.reichelt.de/my/1984952

Reichelt is a German distributor. Maybe you prefer to order at Amazon o.e.

2.6 Wiring
We agreed to use small magnetic connectors.

2.6.1 Bill of material

Nr Source Picture

1 Magnetic connector, 1 pair per wagon

These connectors allow a max. current of 2 A. If one wagon draws the full
current allowed by the DC-DC-Converter (0,5 A), we are able to run 10
animations at the same time. This seems to be sufficient.

2 Wires for the power lines
A closer look at the requirements for the power supply cables resulted in
the above mentioned conductor diameter. With fewer wagons, the
diameter can be smaller. There is a small Excel file to address this issue
(→ Wiring.xlsx).

3 Wire for Data lines
When used as an RS485 node, the data line must be twisted in pairs. The
conductor diameter, on the other hand, is of no particular importance.

These are suggestions only. The explanatory text explains only briefly how we came to the selection.

To ensure interoperability, we also need to agree on a common physical layer. This means primarily

orientation and signals on each pin of the connector. The next picture shows our choice.

Note:

This interoperability between wagons of different schools is nice to have, but not really necessary, because

it will typically not happen that wagons of different schools are mixed within one showcase.

The used assignment by the german team:

Left or Frontside Right- od Backside

+12V | SDA | SCL | GND +12V | SDA | SCL | GND

Warning:

A short cut between the power supply pin (+12V) and one of the ESP’s data pins (SDA, SCL) will

immediately destroy the ESP!

https://www.reichelt.de/my/1984952
https://de.aliexpress.com/item/1005003853427502.html?spm=a2g0o.order_list.0.0.4ea75c5fqTeoqi&gatewayAdapt=glo2deu
https://www.amazon.de/dp/B09P8PMWVZ/ref=pe_27091401_487024491_TE_item
https://www.amazon.de/dp/B07NQCB92N/ref=pe_27091401_487024491_TE_item

 page 11/26

 page 12/26

2.7 Pin assignments PCF8575 and Arduino
The Arduino-Pins are assigned to the bits of the PCF8575 and the PCB connectors as follows:

PCF8575
Register A

Arduino
Pin-Nr

Connector
@ PCB

Connector
@ PCB

Arduino
Pin-Nr

PCF8575
Register B

 J15 (TX1) J17(/Reset)

 J14 (RX1)

 J16(/Reset)

Bit 0 2 J3 (D2) J26 (A7) 10 Bit 0

Bit 1 3 J4 (D3) J25 (A6) 11 Bit 1

Bit 2 4 J5 (D4) J24 (A5/SCL) 12 Bit 2

Bit 3 5 J6 (D5) J23 (A4/SDA) 13 Bit 3

Bit 4 6 J2 (D6) J22 (A3) A0 Bit 4

Bit 5 7 J7 (D7) J21 (A2) A1 Bit 5

Bit 6 8 J8 (D8) J20 (A1) A3 Bit 6

Bit 7 9 J9 (D9) J19 (A0) A3 Bit 7

 J10 (D10) J18 (AREF)

 J11 (MOSI) J27 (+3V3)

 J12 (MISO) J13 (SCK)

The assignment is important for wiring the device. It can be easily changed

in the firmware. The Pin numbers are collected in two arrays, named portA

and portB, see → Test_PCF8575_Emu

uint8_t portA[] = {2, 3, 4, 5, 6, 7, 8, 9};

uint8_t portB[] = {10, 11, 12, 13, A0, A1, A2, A3};

This will allow to simulate part of the functionality of a port expander with this board. See out Git for some
test program to demonstrate this.

https://github.com/T4EU-Rev4/wagon/tree/main/Test_PCF8587_Emu

 page 13/26

2.8 RS485-Node
RS485 is a differential 2-wire bus system widely used in industry.

The functionality was tested but will not be used in this project.

The I2C bus seems to work over the distances we need.

 page 14/26

3 Software

3.1 MQTT-Message flow
Message exchange between all subsystems is done via MQTT. There is no need for a special broker.
Any free service can be used. There is a message flow sequence on application level to establish a
connection between the ESP and the broker / server. This flow is as follows.

3.1.1 Setup

3.1.1.1 Prerequisites

If the ESP is powered on, he first establishes a connection to the configured Wi-Fi and, if successful,
establishes a connection to the preconfigured MQTT broker. We assume, this steps succeeds.

- In the following example we set the location of the ESP to DE (Germany).
Location = DE

- Sometimes, the MAC-Address of the Wi-Fi interface of the ESP is needed. In this test case, it is:
MAC = C8:C9:A3:C5:E5:A4

3.1.1.2 Connection

a) ESP subscribes to a topic. The name of this topic is built by the prefix t4eu_ and the MAC-Address
of the Wi-Fi interface of the ESP itself.
topic = t4eu_C8:C9:A3:C5:E5:A4

 page 15/26

b) ESP sends a JSON encoded message to the predefined topic t4eu_Server. The message is as

follows:
{ "msgType": "Boot",

 "msgData": {

 "country":"DE",

 "client":"C8:C9:A3:C5:E5:A4",

 "topic":"t4eu_C8:C9:A3:C5:E5:A4"

 }

}

c) A server process is also listening to this topic and will receive the message. This server process will
send a message back to the ESP with some new topic. The ESP will receive this message the topic
he subscribed in step a)
Return message looks like this:

{ "msgType": "Boot",

 "msgData": {

 "country":"DE",

 "client":"t4e_DE",

 "topic":"t4eu_DE"

 }

}

d) ESP now unsubscribes from the topic, it enrolled in step a) and subscribes to the topic provided be

the server process. Next step is to inform the server, that these steps are done. So the ESP
publishes a JSON message to the topic t4eu_Server. The message looks like this:

{ "msgType": "Topic",

 "msgData": {

 "country": "DE",

 "client": "t4eu_DE",

 "topic": "t4eu_DE"

 }

}

After this kind of a 3-way-handshake, the connections between the ESP, the broker and the Server
are established.

 page 16/26

3.1.2 Handshaking

After the connection is established, a handshake process will take place. The server will send a message

every 30 s. The client must answer this message to signal, he is still alive.

After running through the process discussed bevor, the server is publishing a message to the topic
t4eu_DE every 30 seconds to see, if the ESP is still alive.
ESP receives a message from the Server via topic t4eu_DE:

{ "msgType":"Handshake",

 "msgData": {

 "sender":"server"

 }

}

ESP answers with a message like this published to the topic t4eu_Server

{ "msgType":"Handshake",

 "msgData":{

 "sender":"client",

 "country":"DE"

 }

}

 page 17/26

3.1.3 Starting and stopping any animation at a wagon

Any animation is triggered by the server with a Device – message.

This type of message is sent to the topic t4eu_DE to trigger an action on a specific wagon of the train
located in DE. The topic itself already determines the addressed showcase / country.

Example message to start an animation:

{

 "msgType": "Device",

 "msgData": {

 "wagon": "DE",

 "action": "1”

 }

}

Example message to stop the animation:

{

 "msgType": "Device",

 "msgData": {

 "wagon": "DE",

 "action": "0”

 }

}

 page 18/26

3.2 Addressing scheme
Actually, the parameters send to the ESP via MQTT are as follows:

wagon a 2-letter country code addressing the wagon in the train and not the location of the

 train / showcase. This is already done by the topic.

action a value between [0|1] is allowed

 0 = Stop the animation
 1 = Start the animation

The server generates two messages. The first one with action=1 will start the animation. The animation
will run as long as the server sends another message with action=0. This will stop the animation. The

time between these two messages is now 15 s.

Maybe an upper time limit will be helpful, if the second message is lost for whatever reason. The German
ESP implementation uses a second parameter called val. Provide an upper time limit here.

3.2.1 Mapping

Animations in our implementation for the ESP uses the following variables.

unt16_t

wagon
The value for wagon is derived from the 2-letter country code (e.g. IT, HR, DE) by a
simple algorithm:

- Convert each letter to its ASCII code
- Shift the value of the first letter to the left by 8 bit positions

By this, each wagon is identified by a 16bit value, which is easier to deal with than a
string.

uint8_t cmd The actual implementation maps the parameter action directly to cmd.
This was done to prevent multiple changes to the animations just to change the
name of the parameter.
Only 2 values have a fixed meaning.
0 = Stop the running animation
1 = Start an animation
2..255 = The meaning of these values depends on the special animation.

uint8_t val The actual implementation will carry the time limit, if the second MQTT request from

the server is lost. This will prevent the animation to run forever.

 page 19/26

3.3 Animations
Due to the lack of processing capabilities by the port expander, every animation using the PCF8575 have to

be done by the ESP. To keep things simple for other programmers with their own ideas of animation, we

implemented a base class TAnimationBasic, where the basic stuff is done and derived some special

classes from this base class for the concrete animation. There are some simple animations available. They

should give an idea, how things are working.

Abbildung 1: Class diagram, see ./git/loco/Loco_01/Loco_01.simp

This diagram was made with Software Ideas Modeller, which is free for non-commercial use. You find the

file in the folder ./doc in the git repository.

TAnimationBasic The base class for all animations, so that we can store all those objects in a list or an
array.

TAnimationLoco An example for a class of animation, which is running at the ESP but do not use the
I2C bus. It uses an object motor, which can control a DC motor.

TAnimationESP This is the base class for all animations running at the ESP and using a PCF 8575 port
expander inside a wagon. 4 Example are available:

 TAnimationDirect The appropriate pin at the port expander is switched on/off 1

 TAnimationKnightRider One light is running from one end to the other and back.

 TAnimationBlink Low nibble and high nibble of each port are switched on and off
alternatively.

1 With the actual version of the protocol, this animation is deprecated because there is no parameter “pin” and
“status” any longer.

https://www.softwareideas.net/
https://github.com/T4EU-Rev4/loco/tree/main/Loco_01

 page 20/26

 TAnimationUpDown Both ports are treated as 8 bit counters. Port A counts upwards while Port
counts downwards.

TAnimationSelf This is the base class for all animations running on a special microcontroller inside a
wagon. The two bytes cmd and val are transparently transported via the I2C bus to
the wagon’s microcontroller. There is no meaning for these two bytes outside the
addressed controller.

3.3.1 Steps to build your own animation

3.3.1.1 Based on a PCF8575 port expander

- Derive a new class from TAnimationESP

- Implement these three virtual methods;

beforeStart() - preparing all you need, like setup()

animate() - will be called regularly every 100ms as long as the animation is running.

 Do your stuff here like you normally do in loop()

afterStop() - clean up the scene, when your animations ends, e.g. switch off all Leds etc.

3.3.1.2 Based on a microcontroller in a wagon

Like Arduino nano, Arduino nano Every or similar
- Normally no special things needed at the ESP.

Just use the class TAnimationSelf. You just have to derive your own class if you need some more

interaction with the ESP like a data transmission from the wagon back to the ESP.

3.3.1.3 Based on the ESP directly

- Take the class TAnimationLoco as an example an derive your own class directly from TAnimationBasic.

At least you have to override the method command() to receive the values from the ESP via I2C

Keep in mind, that this animation is directly running on the ESP and needs therefor some resources

from it.

 page 21/26

4 Wagons

Our train consists of 24 wagons. This no is defined in File: wagon.h
You only have to increase this value, if you have mode than 25 objects in the train (1 loco and 24 wagons).

#define NR_OF_WAGONS 25

The enumeration of all available country codes is just for a better reading of the code.

enum CountryCode {

 L1,

 IT, NO, IR, HR, LT, DE,

 DK, PT, CH, X1, X2, NL,

 TR, AT, PL, FR, SK, SI,

 BE, SE, RO, X3, X4, X5

};
L1 means Loco 1, X1…X4 are unknown at the moment.

The array countries hold the 2 letter country codes. The nr of elements as well as the sequence of the
elements have to match with the enum mentioned bevor.

const char countries[NR_OF_WAGONS][3] = {

 "L1",

 "IT","NO","IR","HR","LT","DE",

 "DK","PT","CH","X1","X2","NL",

 "TR","AT","PL","FR","SK","SI",

 "BE","SE","RO","X3","X4","X5"

};

The array allWagons[] contains the assigned I2C bus addresses and the country code converted to a 16

bit value. See File: wagon.cpp

TWagon allWagons[NR_OF_WAGONS] = {

 {0x10, convertCountryCode(countries[L1])},

 …

 {0x00, convertCountryCode(countries[LT])},

 {0x31, convertCountryCode(countries[DE])},

 {0x32, convertCountryCode(countries[DK])},

 {0x00, convertCountryCode(countries[PT])},

 …

 {0x00, convertCountryCode(countries[SI])},

 {0x20, convertCountryCode(countries[BE])},

 {0x22, convertCountryCode(countries[SE])},

 {0x24, convertCountryCode(countries[RO])},

…

 {0x00, convertCountryCode(countries[X5])}

 };

0x00 means: not used at the moment
Any other value is the corresponding I2C bus address of the device, for example 0x20 … 0x24 for the PCF
8575 port expanders

 page 22/26

The step bevor just assigned a country code to a I2C bus address.

The last step is the assignment of an animation to a specific I2C bus address. This is done in File main.cpp

in the following method:

void assignAnimations() {

 animation[BE] = new TAnimationKnightRider(); //create an animation object

 animation[BE]->setWagon(&allWagons[BE]); //assign a wagon to this animatio

 animation[SE] = new TAnimationBlink();

 animation[SE]->setWagon(&allWagons[SE]);

…

Only 2 lines of code are required to create an animation object and assign this object to a specific wagon.

No more changes are needed to adopt the ESP firmware to your needs.

For example:
The wagon DE is assigned with the animation TAnimationLoco. This animation does not communicate with
the I2C bus and does therefor not need an I2C address. It is set to 0x00.

The wagon BE, SE and RO are used in the simulation with a port expander. So we need an I2C address here.
The following table lists all the wagons.

The animation for each wagon is defined in the method assignAnimations() in main.cpp.
You can assign any availably animation to any listed wagon.

 page 23/26

4.1 Used wagons in the train

The intention of this table is to provide an overview of the I2C addresses already in use.

It corresponds to the german showcase.

 Device Adress

0 L1 0x10 Loco 1 Mapped to wagon L1

 L2 Loco 2

 0x3C Display @ the Loco

1 IT Olivetti, Dilara

2 NO Segelboot mit Fahne, Yannick

3 IR Irland

4 HR Kroation, Radio, Plexiglasschild, Jana

5 LT Litauen

6 DE 0x31 Deutschland, Gutenberg Druckerpresse

7 DK 0x32 Dänemark, Musik mp3

8 PT Portugal, Segelboot, Marvin

9 CH Schweitz, Uhr, Kreuz, Krystian

10 X1 Karusell, Zoe

11 X2 Modellzug, Darwin

12 NL Niederlande, Musik

13 TR Türkei, Brücke

14 AT Österreich

15 PL Polen

16 FR Frankreich, Satellit

17 SK Slowakei, Schlagbaum

18 SI Slowenien,

19 BE 0x20 Belgien, Bierfass

20 SE 0x22 Schweden

21 RO 0x24 Rumänien

22 X3

23 X4 IT 2. Waggon, Turm Pisa

24 X5 NO 2. Wagon Bohrinsel

4.2 Wagon DK (MP3-Player)
I2C-adress 0x32 Arduino Nano Every

wagon DK

cmd 0: Stop the animation
1: Start the animation, sets val=255
2..255: tbd

val Duration for the animation to run
0 = no time limit
1..255 = timelimit in steps of 100ms

 page 24/26

4.3 Wagon BE
I2C-adress 0x20 Port expander PCF8575

wagon BE (Belgium)
Simulation – a PCF8575 port expander fully equipped with 16 Leds

cmd 0: Stop the animation
1: Start the animation, sets val=255
2..255: dc

val Duration for the animation to run
0 = no time limit
1..255 = timelimit in steps of 100ms

dc = don’t care

4.4 Wagon SE
I2C-adress 0x22 Port expander PCF8575

wagon SE (Sweden)
Simulation – a PCF8575 port expander fully equipped with 16 Leds

cmd 0: Stop the animation
1: Start the animation, sets val=255
2..255: dc

val Duration for the animation to run
0 = no time limit
1..255 = timelimit in steps of 100ms

dc = don’t care

4.5 Wagon RO
I2C-adress 0x24 Port expander PCF8575

wagon RO (Romania)
Simulation – a PCF8575 port expander fully equipped with 16 Leds

cmd 0: Stop the animation
1: Start the animation, sets val=255
2..255: dc

val Duration for the animation to run
0 = no time limit
1..255 = timelimit in steps of 100ms

dc = don’t care

4.6 Wagon DE
I2C-adress 0x31 MicroController Arduino Nano Every

wagon DE (Germany)
Gutenberg Letterpress

cmd 0: Stop the animation
1: Start the animation, sets val=255
2..255: tbd

val Duration for the animation to run
0 = no time limit
1..255 = timelimit in steps of 100ms

dc = don’t care

 page 25/26

5 Sources (Hardware + Software)

Hardware

PCF8575 datasheet
 https://www.ti.com/lit/gpn/PCF8575

MCP 23016 datasheet
 https://ww1.microchip.com/downloads/en/DeviceDoc/20090C.pdf

RS485 Bus transceiver
 https://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf

Arduino Nano Every
 https://docs.arduino.cc/hardware/nano-every

Software

Possible useable library for PCF8575
 https://github.com/xreef/PCF8575_library
We do not use this library, because of its limitations. We use the Wire library instead.

Arduino-Client for MQTT
 https://github.com/knolleary/pubsubclient

JSON-Library for Arduino
 https://github.com/bblanchon/ArduinoJson

Our repository at github
 https://github.com/T4EU-Rev4

Italian teams repository for server and frontend as well as there ESP implementation (not public)

https://github.com/CristianAlasotto/TrainForEurope

https://www.ti.com/lit/gpn/PCF8575
https://ww1.microchip.com/downloads/en/DeviceDoc/20090C.pdf
https://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf
https://docs.arduino.cc/hardware/nano-every
https://github.com/xreef/PCF8575_library
https://github.com/knolleary/pubsubclient
https://github.com/bblanchon/ArduinoJson
https://github.com/T4EU-Rev4
https://github.com/CristianAlasotto/TrainForEurope

 page 26/26

6 Sources (Datasheets)

Camera:
 https://publicdomainvectors.org/de/tag/Kamera

Train:
 http://clipart-library.com/clipart/8ixn5bx4T.htm

PCF8575 datasheet
 https://www.ti.com/lit/gpn/PCF8575

MCP 23016 datasheet (alternative to PCF8575, not used here)
 https://ww1.microchip.com/downloads/en/DeviceDoc/20090C.pdf

RS485 Bus transceiver
 https://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf

Arduino Nano Every
 https://docs.arduino.cc/hardware/nano-every

https://publicdomainvectors.org/de/tag/Kamera
http://clipart-library.com/clipart/8ixn5bx4T.htm
https://www.ti.com/lit/gpn/PCF8575
https://ww1.microchip.com/downloads/en/DeviceDoc/20090C.pdf
https://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf
https://docs.arduino.cc/hardware/nano-every

esp 32 : DE Server : broker :

client .connect (MQTT _CLIENT , MQTT _USER , MQTT _PASSWORD)state ()

client .subscribe (t 4eu _<MAC -Address>)

client .publish ("t 4eu _Server " , { "msg Type " : "Boot " , "msg Data " : { "country " : "DE " , "client " : " 08 : 3 A :F 2

 :AD : 47 : 50 " , "topic " : "t 4eu _<MAC -Address " } }) ;

subscribe ()

msg Type= "Boot " client= "<new Client Name> " , "topic= "<new Receive Topic> "

msg Type= Device -> Order to the wagon

Topics @ broker :

t 4eu _Server : I assume , the server is listening to the messages posted to this topic

t 4eu _DE : This topic will be opend by the ESP from the shwocase , located in DE

t 4eu _HR : Showcase in Croatia

t 4eu _IT : Showcase in Italy and so on

unsubscribe old receive topic : "t 4eu _<MAC -Address "

publish to server : msg Type= "Topic " , "topic= "<new Receive Topic> "

alt

client .subscribe (new Receive Topic)

This message flow is some kind of a boot procedure . A server process is listening to channel t 4eu

_Server . So it will see any starting ESP device . Not sure , why the following handshake with clients

topic is neccesary .

This json encoded message will trigger an action at the adressed wagon . The

location is already defined by the topic .

Message example :

{

 "msg Type " : "Device " ,

 "msg Data " : { "wagon " : "DE " , "pin " : " 10 " , "status " : " 0 " }

}

msg Type= Handshake

Message initiated by Server every 30 sec

publish (msg Type= Handshake)

alt

